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Abstract Mwmmenls  of the phase shift behveen current and voltage as a function of magnetic 
field are r e p o d  for electrodes in an m y  which are capacitively coupled to the lwo-dimensional 
eleclron gas on liquid helium. It is experimenlally shown that the phase of the current al the 
ememe edge of lhe sample decreases with magnetic field when the Hall angle comes close 
10 90'. It is shown that this is a direct consequence of the unusual condition of total charge 
conservation for an elecuicdly isolated sample. 

1. Introduction 

A strong magnetic field imposed on a high-mobility electron system drastically modifies 
the current distribution and equipotential lines in the plane normal to the magnetic field [ I ] .  
The distortion arises because the Hall angle p (p = tan-'(fiB) with p the mobility and B 
the magnetic field) becomes close to 90" for pB >> 1. This regime is nowadays extremely 
important as it is easily reached in  two-dimensional electron systems such as inversion layers, 
heterojunctions or electrons on liquid helium. A conventional DC Hall effect measurement 
utilizes (at least) two current contacts at different positions on the sample that short the Hall 
field near these contacts. In the ideal case, where the Hall angle is equal to 90°, as occurs 
under quantum Hall effect conditions, one part of the edge of the sample (including one 
current contact) is at one potential, while the other part (including the other contact) is at 
another potential [2]. The difference is equal to the (quantized) Hall voltage, which can be 
measured at any two terminals at opposite sides [3]. At the connection of the two sides, 
in the comers of the sample, the electric field has a power law singularity [4] where the 
dissipation occurs. 

The situation is very different when there are no electrical contacts to the two- 
dimensional electron system (DES). Such systems can be driven by AC techniques, 
for instance by capacitive coupling. At low fields, pB (< 1, the AC Hall effect is 
equivalent to the Dc Hall effect. At sufficiently large fields and frequencies, it leads to 
a localized edge mode [5 ] ,  which in general is a weakly damped propagating wave called 
an edge magnetoplasmon, which can be regarded as a dynamic Hall effect [6]. Edge 
magnetoplasmons have been investigated recently in both the 2DES in semiconductors [7] 
and electrons on liquid helium [8,9]. In these experiments edge magnetoplasmon resonances 
were measured, where the sample circumference is an integral multiple of the wavelength. 
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Non-resonant behaviour, where both the wavelength and damping length are smaller than 
the sample circumference, has  been observed for electrons on helium [9]. 

In this paper, we investigate experimentally and theoretically the A c  Hall effect for the 
non-degenerate ZDFS of electrons on liquid helium. The magnetic fields are high enough that 
edge mode formation is important. The frequencies are chosen low enough, however, that 
the wavelength of the edge mode is larger than the sample circumference. These conditions 
correspond to the DC Hall effect regime at large Hall angles. The important difference 
is the absence, for the capacitively coupled case, of current contacts that provide severe 
potential boundary value conditions with their drastic consequences for the equipotential 
and current lines dishibution. It is found that the potential is nearly constant all amund the 
edge. Its magnetic-field-dependent value is determined by the property that the total charge 
in the sheet is constant An unambiguous and distinct experimental signature of this charge 
conservation condition is reported. 

2. Experimental details 

The electron layer is held between two metal plates separated by 3 mm. The lower one, 
shown in the inset to figure I ,  consists of an array of electrodes situated 0.5 mm below 
the liquid surface. The electrodes couple capacitively to the electron sheet at the surface. 
One of the lower electrodes (usually 1) is driven by an AC voltage ucos(ot). Using a 
lock-in amplifier, the components of the currents in and out of phase with respect to the 
driving voltage, I(0") and 1(90°), are measured at the electrode diametrically opposite to 
the driving electrode. The phase of the current is defined as Q = rr/2-tan-'[1(9O")/1(O0)] 
so that pure capacitive coupling (i.e. a perfectly conducting electron sheet in zero magnetic 
field) would correspond to Q = 0 [IO]. The currents measured with the surface uncharged, 
which are due to stray capacitance and leakage resistance, are subtracted from the signal 
currents. 

3. Results and analysis 

A typical set of data is given in figure I ,  which shows the measured phase at a fixed density 
as a function of magnetic field for three frequencies at a temperature of 1.9 K at which p s 
2 mz V-I S-I . D ata at fixed frequency, but different densities, are similar. The measured 
absolute values of the phase have a systematic error (due to instrumental phase shifts) that 
causes for instance the small negative phase at zero field in curve (a) in figure 1. The feature 
of interest is the decrease in phase at low fields, which is only observed when the electron 
pool slightly overlaps with the electrodes involved, 1 and 5 in this case. The pool radius 
was controlled by the voltage on a cylindrical guard surrounding the pool. Consequently, 
no such decrease was observed when the electrodes 3-7, which extend deeper into the pool, 
were used as generator and detector. 

In the Sommer-Tanner analysis [IO], the phase change is proportional to the resistance 
of the electron sheet, so that a similar decreasing phase has previously been interpreted 
as a negative magnetoresistance, due to weak localization [ I  11. It is now clear that the 
original analysis only applies in zero magnetic field or for pE << 1 or for a circularly 
symmetric electrode geometry [12]. We now show that a decrease in phase at the edges of 
a ZDFS is characteristic of the AC Hall effect, and will always be measured at one of the 
Hall elecbodes (3 or 7, depending on the field direction with 1 driven) even in small fields. 
However, for large electrodes extending significantly into the pool, a positive phase shift 
will be observed on all other electrodes 1131. 
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Figure 1. Inset geomey of the experimental electrode 
my .  Electrodes 1 and 5 are separated by 12 mm, 
electrodes 3 and 7 by 6 mm. A m y  diameter is 19 mm 
and a cylindrical guard of 19 mm diameter sumunds 
the pool. Curves (a). (b) and (c) give the measured 
phase of the current at elecuude 5 with electrode I 
driven, at frequencies of 1.01. 202 and 4.04 kHz 
respectively. for an elecbon density of 4.2 x 10” m-’ 
and temperature of 1.9 K. The calculaled radius of the 
pwl is 7.4 mm. Assuming a mobility of 2 m2 V-’ sc’, 
Ihe 81 parameren for curves (a). (b) and (c) are 44.31 
and 22 mm respectively. 

Figure 2. Calculaled eleewde-averaged current phase 
shifts f a  the same panmeters as in figure 1, with 
corresponding c w e  labelling. 

The response of the system can be analysed to a good approximation by the 2D diffusion 
equation [ 141: 

a2v(r) /ax2 + Pv(T) /~Y’  = (jmCg/uzz)(V(r) - u(T))  (1) 
where V ( r )  is tbe AC potential in the sheet, o the angular frequency, C, the geometric 
capacitance per unit area between sheet and screening electrodes, U,, the diagonal 
component of the magnetoconductivity tensor and u ( r )  the amplitude of the external voltage 
on the electrodes (constant on a driven electrode, zero elsewhere). For the purpose of the 
present paper, it  suffices to assume rigid boundaries and a homogeneous rectangular density 
profile. The real, inhomogeneous profile is, however, important for a complete description 
of the edge mode in higher fields [9] .  

For a semi-infinite sheet, the. solution of ( I )  with U = 0, subject to the boundary 
condition that the current density ai the edge is zero perpendicular to the edge, is 
V = VoexpE(wt - k -791, where V, is a constant [14]. The components of IC parallel and 
perpendicular to the edge are kll = (1 - j)/611 and ks = (1 - j)/6L with all = (2/p,,0C,)~/* 
and 61 = (prx/pxy)6,1 with pxr and pxy the diagonal and off-diagonal components of the 
magnetoresistivity tensor. The solution is therefore characterized by two length parameters 
611, giving the decay length along the edge, and 61, giving the decay perpendicular to the 
edge. Note that under the conditions used of complete screening and sharp profiles, the 
excitation is strongly damped, i.e. the propagation constants kil and kL have equal real and 
imaginary parts [5]. This analytical solution for the semi-infinite sheet is very helpful for 
understanding the results of numerical calculations for the finite system. 

For the finite, driven system, equation (1) is solved numerically for the particular 
electrode geomeny, using the method described in [14]. The experimentally measured 
parameter, the current at the detecting. electrode, is obtained from I = IJjwC,V(r)dA, 
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where the integration is over the detecting electrode. There is no apriori constraint on the 
potentials anywhere in the sheet. unlike in the more conventional, contacted case where the 
potentials at the current contacts are fixed. As a consequence, for the present electrically 
isolated system, the total charge remains constant, or equivalently, the sum of the charge 
variations An, must be zero. In the capacitively coupled model [14], the charge variation 
Ana is related to the potential variations by eAn, = C,(V - U). Using 11 An,dA = 0 
then leads to 

/” /” V ( r )  dA = vA,, (2) 

where integration is over the sheet surface and A,, is the area of the exciting electrode. 
Since U is real, equation (2) implies that the average of Im(V(r)) is zero. At zero field and 
long wavelengths, so that V ( r )  is approximately constant, equation (2) can be interpreted as 
the capacitive voltage divider between the voltage at the exciting electrode and the voltage 
of the sheet. 

The results of the numerical calculations are given in figure 2 for the values of the 
parameter 611 that correspond to the experiments of figure 1. Here the simple Drude model 
is used for the transport parameters pxx = l / n e p  (independent of magnetic field) and 
pry = B/ne (n is the charge density and e the elementq charge). The decreasing phase 
is nicely reproduced by the calculations. Also in the calculations it is found only when the 
pool has a small overlap with the electrodes. Using the electrode combination 3-7, leaving 
all other parameters unchanged, no decreasing phase is found in the calculations, which 
strikingly corroborates the experimental findings. Roughly, the effect sets in when 6 1  < 611 
or equivalently, in the Drude model, when p B  > 1. In the numerical calculations it is seen 
that the position of the minimum occurs for nearly the same 8 1  in all cases ( 6 ~  = 611/pB in 
the D ~ d e  model). At the minimum, SL N 4 mm, which is of the order of the pool radius 
(7.4 mm). 

From the numerical results it follows that the decreasing phase would be best observed 
(and understood) when 61, is much larger than the pool size and 81 is of the order of 
the pool size. This combination implies large magnetic fields. Experimentally however, 
magnetoresistance [ 151 which strongly decreases 61, will completely obscure the minimum 
at strong fields, so that a medium field strength (and 6 parameters) as well as a high 
temperature must be used as a compromise. Magnetoresistance also causes the quantitative 
differences between experiment and calculations (note the different horizontal scales in 
figures 1 and 2). but these will not be further discussed in this paper. 

A better understanding of the decreasing-phase phenomenon may be obtained by 
considering the detailed behaviour of V across the pool. For a qualitative insight, it is 
most instructive to consider large 611-values (61 >> D ,  where D is the pool diameter) as this 
essentially contains the effect. For this purpose V ( T )  was calculated for a 611 of 100 mm, 
somewhat larger than the experimental values. In figure 3, the phase of V for a cross section 
passing through the middles of electrodes 3 and 7 (1 is driven) is given for several values 
of magnetic field. Refemng to the semi-infinite sheet solution, along the circumference of 
the sheet, the variation of V will be roughly given by V~exp(-jklll) where 1 is the distance 
along the sheet (0 Q 1 < nD). Since we choose D/6,  << 1 this factor will not vary very 
much, neither in amplitude nor in phase. Therefore ail central cross sections give similar 
results as in figure 3, apart from differences of order D/61. This was confirmed by plots 
along other cross sections. Figure 3 therefore represents the phase of V acmss the sheet 
very well. 

Referring again to the semi-infinite sheet solution, the variation of V towards the centre 
should be given by Vo exp(-jklr), where r is the pistance from the edge. The phase @ 
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P i i r e  3. The calculated phase of the 
voltage V ( x , y )  in the electron sheet along 
a diagonal cmss section Uuough the sheet 
along the direction 3-1 with electrode 1 driven 
(refer to inset in figure I). The calculations 
are Performed for Sb = 1W mm. The 
mobility (2 m2 V-' s-l), pool radius (7.4 nun, 
corresponding io the end points of the curves) 
and level height are the same BS used in 
figures 1 and 2. Curves (a) io (e) correspond 
to magnetic field values of 0. 6. 10, 14. and 

Cross Section (mm) 18 T. &pectively. 

of V therefore decreases from the edge as q5 = & - r/SL = q50 - MBrfSII, which can be 
verified from the slopes of the straight line portions near the edges at k7.4mm in figure 3. 
The amplitude of V decreases from the edge as exp(-r/Sl) (not shown). The phase q50 at 
the edge (r = O), is about equal to the phase of VO (apart from a factor of order I / S I I ) .  Both 
$0 and the magnitude of V, are determined by equation (2). which implies that the phase of 
the average of V ( r )  must be zero. The stronger decrease of q5 towards the centre for larger 
B (see figure 3) is therefore compensated by an increase in &, the phase at the edge. Since 
the amplitude of V decays rapidly from the edge in large fields, & will reach a limiting 
value as seen in figure 3. This can be seen by noting that the phase of J rexp(- jk~r)dr  
equals -x/4. Hence the theoretical limiting value of &, is just +x/4. 

To compare with the experimental data it should first be noted that the measured currents 
are proportional to jwC,V(r) and that the experimentally measured phase shift is defined as 
CJ = tan-' [ I  (Oo)/I  (90")]. Hence the phase shift CJ is minus the phase of the average voltage 
V ( r )  over the measuring electrode. When the detecting electrode extends only slightly into 
the pool, it will sense the phase of V near the edge, which increases with B, and so the 
phase of I decreases. This is the case for electrode 5, which has only 1.5 mm overlap 
with the pool. When the detecting electrode extends deep into the pool (e.g. electrodes 3 
and 7 which have 4.5 mm overlap, or electrode 5 when a larger pool diameter has been 
chosen), then the decrease in~phase of V in the interior will dominate the electrode-averaged 
signal. The measured phase of the current will then rise, and eventually stabilize near the 
value D/Sl << 1 (this regime is not covered in the range displayed in figures 1 and 2). 
For finite electrode widths, this situation will always be met at sufficiently large fields 
when SI becomes of the order of the overlap with the detecting electrode. This explains 
why in the theoretical curves the electrode-averaged phase of the current has a minimum. 
As mentioned, the experimentally observed rise is dominated by magnetoresistance, which 
becomes important for fields above 2 T. 

The analogy with the familiar M: Hall effect may be noted from figure 3. For the 
contactless system with 611 >> D, at large magnetic fields where SI < D, the potential at 
the edge of the sample has the same value Vo over the entire perimeter. Its value, magnitude 
and phase, is determined by condition (2). A distinct signature of this picture, the decreasing 
phase, has been reported in this work. In samples with current contacts at fields such that 
f iB >> 1, or equivalently pry/pxr >> 1, the potential at the edge has two distinct values 
at different sides of the sample with near-singularities at the connection points. The two 
values are equal to the extemally applied potentials at the two current contacts. 

In conclusion, the phenomenon reported and discussed here has features from both the 
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DC Hall effect and the high-field dynamic AC Hall effect or edge magnetoplasmon regime 
and therefore makes a bridge between these two regimes. 
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